Source number detection¶
API references¶
- doatools.estimation.source_number.ld_stat(l, n_sources, n_snapshots)[source]¶
Computes the sufficient statistic for source number detection in MDL/AIC.
- Parameters:
References
[1] H. L. Van Trees, Optimum array processing. New York: Wiley, 2002.
- doatools.estimation.source_number.aic(x, n_snapshots)[source]¶
Detects source numbers using AIC.
- Parameters:
Notes
AIC is inconsistent, and tends to asymptotically overestimate the number of sources. However, it tends to give a higher probability of a correct decision.
References
[1] H. L. Van Trees, Optimum array processing. New York: Wiley, 2002.
- doatools.estimation.source_number.mdl(x, n_snapshots)[source]¶
Detects source number using MDL.
- Parameters:
Notes
MDL is consistent.
References
[1] H. L. Van Trees, Optimum array processing. New York: Wiley, 2002.
- doatools.estimation.source_number.sorte(x)[source]¶
Detects source number using SORTE.
- Arg:
- x: (~numpy.ndarray): A 1D vector of the eigenvalues of the covariance
matrix in ascending order, or the covariance matrix itself.
References
[1] Z. He, A. Cichocke, S. Xie, and K. Choi, “Detecting the number of clusters in n-way probabilistic clustering,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, pp. 2006-2021, Nov. 2010.